반응형

회귀분석(regression analysis): 독립변수와 종속변수 간의 함수 관계를 규명하는 통계적인 분석방법


Ŷ=f(X)+ε


 - 독립변수(independent variable) 또는 설명변수(explanatory variable): 다른 변수에 영향을 주는 변수, 흔히 Y= β0 + β1X 공식에서 X

 - 종속변수(dependent variable) 또는 반응변수(response variable): 독립 변수에 의해 영향을 받는다는 변수, 흔히 Y= β0 + β1X 공식에서 Y

 

회귀(回歸)라는 말은다시 본디의 자리로 돌아온다라는 뜻으로 통계 분석에 처음 사용한 사람은 영국의 우생학자 Galton. 완두콩 실험을 통해 부모콩의 무게를 X, 자식콩의 무게를 Y축으로 산점도를 그리자, 이들의 관계식은 양이 관계이나 1보다 작아서 자식의 무게는 평균 무게로 회귀하려는 경향이 있다는 사실을 발견하고 이를 회귀(regression)으로 표현. 당시에 Galton 연구실에서 일하던 동료 연구원 Karl Pearson 이를 계량적으로 처음으로 분석하여 발표.

 

1. 데이터를 불러와서 산점도 그래프를 그리기

> market=read.table('market-1.txt',header=T)

> head(market,3)

NUMBER X  Y

1      1 4  9

2      2 8 20

3      3 9 22

> plot(market$X,market$Y,xlab='광고료',ylab='총판매액',pch=19)

> title('광고료와 판매액의 산점도')


 

2. 단순 회귀 분석 실시

> market.lm=lm(Y~X,data=market)

> summary(market.lm)

 

 

해석

추정값은 Coefficients: Estimate에서 확인. 추정된 회귀식은 Ŷ=-2.27 + 2.6 X

 


3. 산점도 위에 회귀직선을 그리자 - 회귀선의 추정

> abline(market.lm)

> identify(market$X,market$Y)

[1]  4  5 10

# Identify는 재미있는 함수인데, 본 함수를 입력하고 마우스로 점을 클릭하면 그림처럼 값을 알 수 있다.


> xbar = mean(market$X)

> ybar = mean(market$Y)

> xbar

[1] 8

> ybar

[1] 18.6

> points(xbar,ybar,pch=17,cex=2.0,col='RED')

> text(xbar,ybar,"(8,18.6)")

> fx <- "Y-hat = -2.27 + 2.6*X "

> text(locator(1),fx) #locator(1) 마우스로 클릭하면서 지정


 


4. 회귀식 특징

> names(market.lm)

[1] "coefficients"  "residuals"     "effects"       "rank"          "fitted.values"

[6] "assign"        "qr"            "df.residual"   "xlevels"       "call"        

[11] "terms"         "model"       

> market.lm$resid

1          2          3          4          5          6          7          8

0.8347826  1.4000000  0.7913043 -3.6000000 -1.6000000  0.9652174  4.6173913  1.1826087

9         10

-3.3826087 -1.2086957

> resid=market.lm$residual

> sum(resid) #특징1. 잔차의합은 0이다

[1] 0

> sum(market$X*resid) #특징2. 잔차들의 Xi 의한 가중합은 0이다

[1] 2.220446e-15

> sum(market.lm$fitted*resid) #특징3. 잔차들의 Yi 의한 가중합은 0이다

[1] -1.24345e-14

> names(market.lm)

 [1] "coefficients"  "residuals"     "effects"       "rank"         

 [5] "fitted.values" "assign"        "qr"            "df.residual"  

 [9] "xlevels"       "call"          "terms"         "model"        

> sum(market.lm$fitted.values)

[1] 186

> sum(market$Y)

[1] 186

#특징4. 추정값Yhat의 값과 관찰값Yi의 값은 같다.


5. 회귀모형의 정도

 - 산점도 위에 회귀직선을 그려 회귀선의 정도를 대략 짐작할 있으나, 이러한 경우는 독립변수가 하나인 경우에만 유용하게 쓰일 있다. 추정된 회귀선의 정도를 측정하는 여러 가지 측도(measure) 중에서 널리 이용되는 세가지를 알아보자

 ① 분산분석표에 의한 F-검정

 ② 결정계수

 ③ 추정값의 표준오차 

 ④ 상관계수와 결정계수


① 분산분석표에 의한 F-검정

요인

자유도

제곱합

평균제곱

F0

회귀

1

SSR(회귀제곱합)

MSR=SSR

MSR/MSE

잔차

n-2

SSE(잔차제곱합)

MES=SSE/n-2

 

n-1

SST( 제곱합)

 

 

- SST(Total sum of squares): 제곱합

- SSR(Sum of squares due to regression): 회귀제곱합, 설명되는 편차

- SSE(Sum of squares due to residual errors): 잔차제곱합, 설명되지 않는 편차

 

귀무가설 H0 : β1 = 0

대립가설 H1 : β1 0

 

F0 > F(1, n-2 ; α )이면 귀무가설 H0 : β1 = 0 기각하고, 회귀직선이 유의하다고 말한다. R분석 결과에서는 검정통계량 F0 대한 유의확률 p값이 제공된다. p < 유의확률 α이면 귀무가설 H0 : β1 = 0 기각한다

 

분산분석표

> anova(market.lm) #분산분석표

 

요인

자유도

제곱합

평균제곱

F0

회귀

1 = 1

SSR(회귀제곱합)

= 313.04

MSR=SSR

= 313.04

MSR/MSE

= 45.24

잔차

10-2 = 8

SSE(잔차제곱합)

= 55.36

MSE(잔차 평균제곱)  = SSE/n-2= 6.92

 

10-1 = 9

SST( 제곱합)

= 368.4

 

 

p값은0.0001487p < 유의확률 α 이므로 귀무가설  H0 : β1 = 0 기각한다, 따라서 회귀식은 유의하다.

 

> qf(0.95,1,8)

[1] 5.317655

유의수준 α =0.05에서 F-기각역 F(1,8;0.05)의 값은 5.32, " F0 = 45.24 > 5.32"이므로 귀무가설 기각, 회귀선은 유희하다

 

> 1-pf(45.25,1,8)

[1] 0.0001485485

유의확률 p값을 이용한 검정은 0.0001485485 이 값이 주어진 유의수준 α =0.05 보다 작을수록 귀무가설을 기각한다.

 


결정계수


R2=SSR/SST =1-SSE/SST


R2 결정계수(coefficient of determination)라고 부른다.


R2=SSR/SST = 313.04/368.4= 84.97%


이는 총변동 주에서 회귀직선에 의하여 설명되는 부분이 84.97%라는 의미로서, 추정된 회귀선의 정도가 높다는 것을 있다.

 

R 통해서도 있는데, Multiple R-squared 0.8497임을 있다.

> summary(market.lm)  



 

 추정값의 표준오차

선형회귀모형 Y= β0 + β1X + ε 을 표본의 자료로부터 적합시킬 때,


Y의 기댓값은 E(Y) = β0 + β1X, 분산은 σ2로 가정,


하였다. 따라서 Y의 측정값들이 회귀선 주위에 가깝게 있다면 σ의 추정값은 작아질 것이다. 

분산분석표에서 잔차평균제곱 MSE는 σ2의 불편추정량이 된다. 따라서 MSE의 제곱근을 추정값의 표준오차(standard error of estimate)라고 부르며, 다음과 같이 표현한다.



SY•X = SQRT(MSE) = SQRT(SSE/n-2) = 2.63


 

R 통해서도 있는데, Residual standard error 2.631임을 있다.

> summary(market.lm) 


 


상관계수와 결정계수

상관계수는 연속인 변수 간의 선형관계(linear relationship) 어느 정도인가를 재는 측도로서, 단순 회귀 분석에서는 상관계수 r 다음과 같이 구할 있다.


r = ±SQRT(R2 )


즉 상관계수는 결정계수 R2 제곱근이며, 만약 추정된 회귀선의 기울기 b1 양이면 양의 상관계수를 갖고, 기울기b1 음이면 음의 상관계수를 갖는다. 회귀식 Ŷ=-2.27 + 2.6 X에서 b1 2.6으로 양이므로 상관계수는 0.8497 sqrt , 0.9217임을 있다.

반응형
Posted by 마르띤
,